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ABSTRACT* 
Historically, the Zparameter log-normal distribution has been the method of choice when describing soil aggregate 
size distributions and generally provides a good description. However, the assumptions regarding the upper and 
lower extremes of the Zparameter log-normal ogive can limit the applicability of the standard log-normal 
distribution. Many tillage-induced aggregate size distributions cannot be adequately represented by a 2-parameter 
log-normal ogive. Two 3-parameter and one 4-parameter log-normal ogives are presented that can more accurately 
describe a wider range of field-sampled aggregate size distributions. Computational techniques for determining 
values for the coefficients of these modified log-normal functions are also discussed1. 

INTRODUCTION 
The size distribution of soil aggregates affects many facets of agriculture from wind erosion susceptibility (Chepil, 
1950a, 1953) to seedbed suitability (Hadas and Russo, 1974; Schneider and Gupta, 1985). Gardner (1956) 
demonstrated that the 2-parameter log-normal distribution provided a good description of the aggregate size 
distribution of many soils. Kemper and Chepil(1956) concurred with Gardner, extolling the virtue of summarizing 
aggregate size distribution data with only the two parameters, geometric mean diameter, x,, and geometric standard 
deviation, a,. Unfortunately, they did not recommend this method for general use because of the extensive work 
required to adequately sieve field samples and the computational effort required to determine the parameters. This 
led to the adoption of many less meaningful measures of aggregate size distribution. For this reason, Hagen et al. 
(1987) presented a computerized iteration procedure that required only two sieves to determine the parameters for 
a standard, 2-parameter, log-normal ogive to characterize aggregate size distribution of dry soil. The one caveat that 
Gardner mentioned is that any field-sampled, aggregate size distribution will exhibit some deviation at the extremes 
from a standard log-normal ogive. Hagen et al. (1987), also realizing this limitation, suggested the possibility of 
using 3- or Cparameter log-normal forms if the tails of the distributions are important to the application of the data. 

The Wind Erosion Prediction System (WEPS), presently being developed by the Agricultural Research Service, 
USDA (Hagen, 1991), requires the dry aggregate size distribution to be accurately represented on a daily basis within 
the model. A standard log-normal ogive implies that the smallest aggregate size is zero and the largest size is 
infinite. Agricultural soils have upper and lower size limits that account for deviations of aggregate size distributions 
from log-normality. For these reasons, a more complete method of representing aggregate size distribution was 
desired for WEPS. 

Kottler (1950a), Irani (1959), and Irani and Callis (1963) examined situations that arose when data conforming to 
log-nornlality had all sizes greater than or less than a specified size (or both) removed from the data set. The 
modified data sets were actually similar to many of the data sets typically presented as being log-normal distributions. 
In these "non-ideal" cases, physical constraints limit the "growth" or "breakdown" process, and, therefore, are not 
truly log-normal. The "limited growth" and "limited breakdown" processes were represented by a log-normal ogive 
by using simple transformations that satisfied the new boundary conditions. Because dry aggregate size distributions 
have some limiting maximum and minimum sizes, modified log-normal ogives should more accurately represent these 
distributions. The purpose of this paper is to describe the procedures required to determine parameters of the 
modified log-normal ogive and present methods for computing their values. Comparisons between the standard and 
modified log-normal ogives were made using actual aggregate size distributions determined from sieved field 
samples. 

Contribution No  93-219-J from the Kansas Agricultural Experiment Station. 

' Code employing the computational methods discussed are available upon request by sending a DOS compatible disk to the author. 
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THEORY 
Particle sizes, such as soil aggregate sizes, are frequently found empirically to fit the log-normal distribution function. 
Suppose that x is the quantity being measured (e.g., aggregate size). It will be found to be distributed with a density 
function, p(x), where p(x)du is the probability that a measured value will fall within the range [x, x+dr]. 

If x is described by a log-normal distribution, then y=ln(x) has a normal distribution n(y), 

in which the parameters p and d are respectively, the mean and the variance of the y values. Because n(y) is 
symmetric about the mean, p is also the median of the normal distribution (on the average, half the y values will be 
greater than p and half will be less). 

Because p(x) and n(y) describe the same phenomenon, the probability of obtaining values in corresponding dy and 
d\: intervals must be equal, i.e., p(x)du = n(y)dy. Thus, the log-normal distributionp(x) is given by Eq. [2]. 

The average value of x is defined as: 

Because y=ln(x), we have, 

Substituting Eq. [2] and [4] into Eq. [3] and integrating, we have: 

= b*a2m x, 

For a log-normal distribution, a f  is always larger than zero; thus, based on Eq. [4] and [S], the log-normal 
distribution can be fully described by the median size, x,, and the mean size, x,. In other words, from the observed 
mean and median, values for p and a f  of the approximating log-normal distribution can be estimated as shown in 
Eq. [6] and Eq. [7]. 

However, most log-normal distributions are expressed in terms of the geometric mean, x,, and geometric standard 
deviation, a,, which are defined as a,=ea and x,=@, respectively. Substituting x, and a, into Eq. 121, p(x) can be 
expressed in terms of x, and a, as shown in Eq. [8]. 
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(8) 

For many analyses, it is often useful to express the measured distribution in terms of the cumulative probability 
distribution, F(x), which is the probability (or frequency) that a measured value will be less than or equal to x. If 
t=ln(x/xJ/ln(aJ, then for the log-normal distribution, this cumulative distribution function of x is given by: 

Thus, the probability of x, P(%sx) and P(%zx), in terms of percent, can be calculated as: 

Kottler (1950a) treated particle size distributions from a kinetic point of view. He discussed the concept of "limited 
growth" in which most phenomena of normal growth have a rate that increases only during an initial period and 
afterwards decreases gradually. He introduces a lower limit, x, (corresponding to the absolute minimum particle 
size), which must be greater than zero and an upper limit, x, (corresponding to the absolute maximum size obtained), 
which must be less than infinity. By using the transformation, .f = (x-xJ(x,-xJ/(x,-x) in which x is in the range of 
[x, x,], where Osx,cu,<+oo, a more general Cparameter log-normal case, Eq. [ll], can be introduced. 

The corresponding cumulative distribution function, in terms of percent, are: 

2, and d, can be determined from computational procedures discussed later. To obtain the x, value from jg, simply 
perform the reverse transformation operation of R as shown in Eq. [13]. Note that x, is the 50% value, x,,, and 
represents the "middle" of the distribution. 

To obtain the a, value from d,, compute the arithmetic average of the 2 values, J,,,,, 
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(14) 

to obtain x, perform the transformation as shown in Eq. [IS] on &,, 

and then compute ug as a function of x, and x, as shown in Eq. [16]. 

If x,=O and x,+=oo, this general case, Eq. [I l l ,  will reduce to the simple or standard, 2-parameter, log-normal 
distribution, Eq. [2] and its corresponding cumulative distribution function, Eq. [lo]. The two, 3-parameter, 
modified, log-normal forms are derived when either the lower value, x,, equals zero or the upper value, x,, 
approaches infinity. All of these log-normal forms are summarized in Table 1. 

COMPUTATIONAL PROCEDURES 
Two methods of computing the parameters for the four forms of the log-normal ogives discussed here were 
implemented. One method uses a direct computational scheme, and the second employs a nonlinear optimization 
technique to determine the "best" parameters based on the the cumulative distribution curve. 

The direct computational scheme outlined by Allen (1981) and Campbell (1985) assumes that the data are log- 
normally distributed and works best when the sieve cuts are sized according to a geometric progression. It requires 
an estimate of the minimum size, x,, and the maximum size, x-, (to determine the geometric means, xd,, and xd,,,, 
of the sn~allest and largest sieve cuts respectively). Also, if a modified log-normal form is being used, x , u c , u ~ ~ ~ ,  
and X,(,,,ct.,ct. ,,,. 

The limitations of this method are that: a) an estimate of the geometric means of the smallest and largest sieve cuts 
inust be made; b) the limits of the distribution, x, and x,, must be known (or their ranges known if an optimization 
technique is employed to determine them); and c) if the smallest and/or largest sieve cuts have no material in them 
for a particular distribution, they must be removed from the computations if the limiting parameters, x, and/or x,, 
need to fall within those size ranges. The benefit of the direct computational scheme is that it is very fast and does 
not require any iterative procedures, making it ideal for applications where speed is critical. 

For the direct computational procedure, the geometric mean diameter, 2,, and geometric standard deviation, dg, are: 
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Z g = e a  and G 8 = e b  

where: 

i = sieve cut 

fm = 4 s  = 
n = total number of sieves cuts 

mean within sieve cut i 

m, = mass fraction of sieve cut i 

The second method uses a constrained optimization procedure presented by Box (1963) to estimate the parameten 
of the cumulative frequency curve for any of the selected log-normal forms (Eq. Ell]). The function used to 
determine the "best fit" was the weighted sum of the squared residuals due to error (SSE) as shown in Eq. [18]. 

n 

SSE = C wOt - y ~ 2  

data valw 
total number of data values 
sieve size for data value i 

actual &%st) 
estimate of #(% st) 
weighting factor for data value i 

The actual and predicted probabilities less than (or greater than) the sieved sizes were used as the y values. A 
weighting factor of 1 was used. Other weighting schemes may be used depending upon the region of interest. 
Kottler (1950b) suggested that "fitting" log-normal data should generally employ a probability weighting factor if 
the 50% point is of greatest interest. 

The limitation of this method is that it is an iterative procedure and, therefore, may not be appropriate for use in 
applications where speed is critical. Nevertheless, it will determine the "best fit" without the limitations and 
assumptions required of the direct computation procedure. It does need estimates of the upper and lower ranges for 
each of the parameters being determined. These can be set broadly enough to encompass all expected size 
distributions. Narrower ranges, if known, will allow the optimization procedure to "close in" on the solution faster, 
but are not strictly required. By setting the upper and lower ranges equally for a particular parameter, then the 
optimization routine would effectively force the "best fit" model to have the desired value for that parameter. 

DISCUSSION 
Often, the standard log-normal form will overpredict the amount of small material and underpredict the amount of 
large material when used to classify field aggregate size distributions, because the distributions have a lower size 
limit greater than zero and an upper finite size limit. Modified log-normal forms arc means of more accurately 
dcscribing field-sampled aggregate size distributions, including their upper and lower tails. 

Many tillage-induced aggregate size distributions are influenced by the amount and size of the largest aggregates in 
the field prior to tillage. Wagner and Ding (1992) showed that disk tillage operations primarily break down large 
aggregates (greater than 50 mm) when they are present, but act on a wide range of aggregate sizes when large 
aggregates do not exist. Therefore, the resulting post-tillage, maximum, aggregate sizc, as well as aggregate size 
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distribution, is dependent upon the pre-tillage aggregate size distribution. Future advances in modeling aggregate 
breakdown by tillage operations will necessarily require accurate representation of the pre-tillage aggregate size 
distribution, including the upper size segment. 

The complete aggregate size distribution provides useful information about wind erosion processes. For example: 

1. Given different aggregate size distributions with the same percentage of erodible aggregates (less than 0.84 
mm), Chepil(1950b) showed that aggregate size distributions with smaller nonerodible aggregates resulted 
in more rapid surface armoring and, thus, a less erodible fraction available for direct emission. In other 
words, small non-erodible aggregates provide more surface cover and shelter for the erodible aggregates 
than do large non-erodible aggregates. Therefore, with a complete aggregate size distribution, we should 
be able to determine the amount of "shelter" provided by non-erodible aggregates. 

2. Given a complete aggregate size distribution and a shelter angle distribution and assuming that the smallest 
aggregates are residing in the most sheltered areas, we can: 

a. compute the fraction of soil surface where friction velocity is above saltation threshold, 
b. compute the volume of particles available for emission wagen, 1991), and 
c. potentially compute the fraction of PM-10 (sub 10 pm size particles) present for direct emission 

(PM-10 has health and regulatory implications). 

3. With a complete aggregate size distribution, we can also determine the effect of sorting by wind erosion. 
Size ranges for saltation, suspension, and emission materials change with windspeed and surface roughness. 
Therefore, these components could then be viewed together with the surface aggregate size distribution. 

Figures 1 and 2 both illustrate how 3 and 4-parameter modified log-normal functions more accurately represent actual 
aggregate size distributions. This is verified by the respective R2 values (Table 2) for each of the log-normal forms 
in the figures. Figure 1 is a post-tillage aggregate size distribution from a Kimo silty clay loam (clayey over loamy, 
montmorillonitic, mesic Fluvaquentic Montmorillonitic) in which a very high percentage of large aggregates was 
formed. The chisel-shank spacing, however, probably helped limit the size of the aggregates formed and is reflected 
in the sharp rise in the cumulative distribution curve at the upper end. The upper size limit, x,, was determined to 
have a value of 101.6 mm, as shown in Table 2, for the 3-parameter log-normal estimate of the aggregate size 
distribution in figure 1. 

Figure 2 is an aggregate size distribution from a Reading silt loam (fine-silty, mixed, inesic Typic Argiudoll) that 
had the smaller fraction sieved into additional size classes to more accurately determine the form of the lower tail 
of the distribution. Notice that this distribution also reflects a large amount of big aggregates that causes the 
cumulative distribution to deviate from a straight line. The 4-parameter log-normal form fit this distribution very 
well and determined the lower limit, x,, to be 0.17 mm and the upper limit, x,, to be 45.71 mm (Table 2). 

The standard, 2-parameter, log-normal distribution is completely described by x, and 0,. By definition, the geometric 
mean, x,, for the 2-parameter log-normal function directly provides the size at which 50% is greater and 50% is less 
than its value. The geometric standard deviation, o,, is defined as the ratio of the size at 84.13% probability to the 
size at 50% probability (or the size at 50% probability to the size at 15.87% probability) and indicates the dispersion 
or range of sizes for a 2-parameter log-normal function. 

The addition of new parameters for the modified log-normal functions allow more accurate descriptions of typical 
size distributions, but makes conlparisons of such size distributions more difficult. Note that the 2, and 6, terms 
(Table 1) for thc three modified log-normal functions are not directly comparable with each other or with x, and a, 
terms from the standard log-normal function. Both A?, and d, are defined in terms of the transformation variable, 
2, and are functions of the x, and x, parameters. Thus, A?, and 8, parameters represent the physical relationships 



Wagner 8 

mentioned above, but they apply to the transformed variable, 2, and not to the original variable, x, for the modified 
log-normal functions. This will usually cause misleading comparisons between different distributions based solely 
on the modified log-normal parameters. This can be seen by inspecting the parameter values provided in Table 2. 

Ropp (1985) discussed this problem along with the tendency of many researchers to assume normality or even log- 
normality and then present only the fraction of interest. He suggested that the most effective method for displaying 
aggregate size distributions is to use a log-normal probability method. Because no one parameter or group of 
parameters can be defined for use when presenting and discussing all size distribution information, visual presentation 
of the data and summarization of the parameters describing the complete distribution are requisite, especially when 
using one of the modified log-normal forms. 

SUMMARY AND CONCLUSIONS 
Modified forms of the standard log-normal functions can be used effectively to describe a broader range of aggregate 
size distributions determined from sieving field samples. The modified methods assume that either a limiting, non- 
zero, minimum size or a finite maximum size exists (or both), which is normally true for aggregate size distribution~. 
Therefore, the modified log-normal forms usually can represent a size distribution more accurately, especially at the 
tails, than a standard log-normal function. A more accurate description of aggregate size distributions helps depict 
wind erosion processes in greater detail and allows models such as WEPS to better simulate them. 

Two methods for computing the parameters of all four log-normal functions were presented. One was a direct 
computation method, which is useful for applications where computation speed is a factor. The second method uses 
a non-linear optimization technique, which will find the "best fit" parameter values more precisely, but requires more 
computational overhead. 

Data should be collected and relationships formed between tillage operations, soil types, and soil conditions for 
models such as WEPS to reliably predict tillage-induced aggregate size distribution. Investigations into the 
relationships between the maximum, tillage-induced, aggregate size and the tillage tool should be explored. Field 
samples also should be studied to determine if correlations exist between the minimum aggregate sizes found and 
the amount of PM-10 material produced under various conditions and operations. 
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Table 1. Standard and modified log-normal forms. 

Case Log-Normal Form Constraints Parameters 

I standard Zparameter 0 s x < - =I 

I1 modified 3-parameter 0 s x s x, < 3, d,, xm 

III modified 3-parameter 0 < xo s x < co j,, d,, xo 

IV modified 4-parameter 0 < xo s x s x, < R,, &,, xo, x, 

Table 2. Standard and modified log-normal coefficients for two aggregate size distributions. 

Soil Log-Normal Form x,, R~ 3 ex xo x. 

Kimo 2-parameter 16.13 5.47 .98 16.13 5.47 

silty clay loam 3-parameter 28.66 4.74 .99 39.88 15.89 - 101.60 

Reading 2-parameter 2.46 8.90 .95 2.46 8.90 

silt loam 4-parameter 3.47 9.31 .99 3.73 22.66 0.017 45.71 
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Figure 1. ASD sample from a Kimo silty clay loam. 

Reading Silt Loam I 
Sieve data 

- - - -  Standard log-normal 
- Modified log-normal , , 

(4 parameter) 

I 0 1 a " " ' I  r I I I , , , ,  I 1 I , I , U  

Aggregate size (rnrn) 

Figure 2. ASD sample from a Reading silt loam. 


